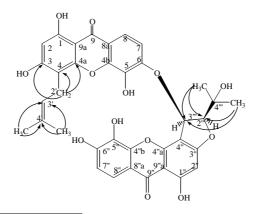
A New Bisxanthone from *Hypericum japonicum* Thunb. ex Murray

Peng FU, Wei Dong ZHANG*, Ting Zhao LI, Run Hui LIU, Hui Liang LI, Wei ZHANG, Hai Sheng CHEN


Department of Natural Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433

Abstract: A new bisxanthone, named bijaponicaxanthone C, was isolated from the whole plant of *Hypericum japonicum*. The structure was elucidated as $6-[1",5",6"-trihydroxy-2"-(\beta-hydroxy-\beta-methylethyl)-2",3"'-dihydrofuran(5"',4"',3",4")xanthone-3"'-oxyl]-1,3,5-trihydroxy-4-isoprenylxanthone (1) on the basis of the spectral and chemical evidences.$

KeyWords: *Hypericum japonicum*, bisxanthone, 6-[1",5",6"-trihydroxy-2"''(β -hydroxy- β -methyl-ethyl)-2"',3"'-dihydrofuran(5"',4"',3",4")xanthone-3"'-oxyl]-1,3,5-trihydroxy-4-isoprenylxanthone, bijaponicaxanthone C.

Hypericum japonicum Thunb. ex Murray is a Chinese medicinal plant widely distributed in central and east China. The whole plant is being used for the treatment of several bacterical diseases, infectious hepatitis, gastrointestinal disorder and tumors¹. It was reported that many kinds of compound, such as xanthones, chromenes, flavanonols, dipeptide derivatives and phloroglucinol derivatives²⁻⁵, have been isolated previously. In this paper, we report the characterization of a new bisxanthone obtained from the whole plant of *Hypericum japonicum* and its structure was determined by UV, IR, HREIMS, 1D and 2D-NMR spectra.

Figure 1 The structure and the key correlations in HMBC of compound 1

^{*} E-mail: WDZhangY@hotmail.com

Peng FU et al.

The ethanol extract of the whole plant of *Hypericum japonicum* (23 kg) was evaporated *in vacuo*. The residue was suspended in water, and then partitioned with petroleum ether, $CHCl_3$ and EtOAc, successively. The EtOAc extract (280 g) was further seperated by repeated colum chromatography on silica gel, eluted with $CHCl_3:CH_3OH$ (10:1) to afford compound **1** (Figure 1).

Compound 1, was obtained as a yellow powder, mp 240-245°C (decomposition). The ion at m/z 670.08 [M⁺] of ESIMS is in agreement with the formula $C_{36}H_{30}O_{13}$, which was confirmed by HRESIMS, showing the [M+H]⁺ ion at m/z 671.1768, calculated for $C_{36}H_{31}O_{13}$: 671.1765. The UV spectrum showed the characteristic absorption of chromenoxanthones (253 and 324 nm). In the IR the adsorption of phenolic hydroxy

Position	¹³ C-NMR	¹ H-NMR (δppm, <i>J</i> Hz)	HMBC (H/O
1	160.4		1-OF
2	97.7	6.24 (IH, s)	1-OF
3	162.9		2'-H
4	106.4		2-H; 2'-I
4a	154.1		2'-1
4b	145.7		8-1
5	131.6		7-I
6	149.4		8-I
7	113.3	7.03 (1H, d, <i>J</i> =9 Hz)	
8	116.7	7.62 (1H, d, <i>J</i> =9 Hz)	
8a	113.6		7-1
9	179.6		8-1
9a	101.5		1-OI
2'	21.1	3.37 (2H, d, <i>J</i> =7 Hz)	
3'	122.4	5.42 (IH, t, <i>J</i> =7 Hz)	2'-H; 4'-M
4'	131.0		2'-H; 4'-M
4'-Me	17.7; 17.9	1.64,1.77 (each 3H, s)	3'-H; 4'-M
1"	157.2		
2"	97.7	6.30 (1H, s)	
3"	162.7		
4"	101.7		2"-1
4"a	150.2		
4''b	145.9		8''-I
5"	132.7		7''-1
6"	151.9		8''-I
7"	113.0	6.94 (1H, d, <i>J</i> =9 Hz)	
8"	115.7	7.51 (1H, d, <i>J</i> =9 Hz)	
8"a	112.8		7''-1
9"	179.9		2"-H; 8"-I
9"a	103.1		
2'''	79.2	5.92 (1H, br)	4''''-M
3'''	71.0	5.02 (1H, br)	4''''-M
4'''	70.2		
4'''-Me	28.4; 25.5	1.31, 1.26 (each 3H, s)	4''''-M
1-OH		12.95	
1"-OH		13.40	
4'''-OH		4.35	

Table 1 NMR data and major correlation of HMBC and HMQC of 1 (in DMSO-d₆)

The assignment was based on DEPT, ¹H-¹H COSY, HMBC and HMQC experiments. 500MHz for ¹H-NMR, 125MHz for ¹³C-NMR, HMBC, HMQC.

772

773

groups (3422 cm⁻¹) and a conjugated carbonyl group (1648 cm⁻¹) were observed. The EIMS spectrum showed two groups of fragment at m/z 311, 326 and 283. These data indicated that it possessed two similar prenylated xanthones, combining its ¹HNMR and ¹³C NMR. One xanthone fragment resembled to the known compound 1, 3, 5, 6tetrahydroxy-4-prenylxanthone³. The downfield protons at $\delta 5.42$ (t, 1H, J = 7 Hz, H-3'), 3.37 (d, 2H, J = 7 Hz, H-2') and the six proton singlets at $\delta 1.64$, 1.77 (4'-Me) suggested the presence of a isoprenyl. The AB-system aromatic proton signal at δ 7.03 (d, 1H, J = 9 Hz) and δ 7.62 (d, 1H, J = 9 Hz) were due to H-7 and H-8, respectively, whereas the aromatic singlet at δ 6.24 (1H) were due to H-2³. The other group of aromatic proton signal at δ 6.94 (d, 1H, J =9 Hz, H-7"), δ 7.51 (d, 1H, J = 9 Hz, H-8") and δ 6.30 (s, 1H, H-2") were similar to those of the xanthone fragment mentioned above³. Combining its DEPT and 2D NMR, the proton signals at $\delta 5.92$ (brs, 1H, H-2"), 5.02 (brs, 1H, H-3"), 4.35 (brs, 1H, 4"-OH), and 1.26, 1.31 (s, each 3H, 4"-Me) indicated the presence of a 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-3-oxyl-furan ring³. The stereochemistry of 1 was established by NOESY spectrum. Clear NOE correlations between H-8" and 4'-Me, H-2" and H-3" indicated H-2" and H-3" were in α -configuration. In comparison with those of 1, 3, 5, 6-tetrahydroxy-4-prenylxanthone, the downfield shift (+0.12 ppm) for H-7 and the upfield shift (-5.3 ppm) for C-6 indicated a C₆-O-C_{3"} linkage³. Thus, compound **1** was established as 6-[1",5",6"trihydroxy-2"'-(\beta-hydroxy-\beta-methylethyl)-2"',3"'-dihydrofuran (5"', 4"', 3",4")xanthone-3"-oxyl]-1,3,5-trihydroxy-4-isoprenylbisxanthone, named bijaponicaxanthone C. From its HMQC and HMBC, all of the carbon signals were assigned (Table 1).

Acknowledgments

The research work was supported by the National 863 program of China (2003AA2Z3507); Science and Technology Developping Foundation of Shanghai (02DZ19147, 01DJ19010). Authors thank Professor Han Chen ZHENG (Department of Pharmacognosy, School of Pharmacy, Second Military Medical University) for collecting *Hypericum japonicum*.

References

- 1. Lexicon of Traditional Chinese Medicine, Shanghai Sci-Tech. Press. 1977, 1, 813.
- 2. Editorial Board of Zhong Hua Ben Cao of State Administration of Traditional Chinese Medicine. *Zhong Hua Ben Cao*, Shanghai Sci-Tech. Press., 1999, *3*,598
- 3. Q. L. Wu, S. P. Wang, L. J. Du, et al., Phytochemistry, 1998, 49(5),1395.
- 4. K. Ishiguro, S. Nagata, H. Oku, et al., Planta Med, 2002, 68,258
- 5. L. H. Hu, C. W. Khoo, J. J. Vittal, et al., Phytochemistry, 2000, 53(6),705

Received 8 June, 2004